If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+14t-98=0
a = 5; b = 14; c = -98;
Δ = b2-4ac
Δ = 142-4·5·(-98)
Δ = 2156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2156}=\sqrt{196*11}=\sqrt{196}*\sqrt{11}=14\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14\sqrt{11}}{2*5}=\frac{-14-14\sqrt{11}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14\sqrt{11}}{2*5}=\frac{-14+14\sqrt{11}}{10} $
| 3x−20=10 | | |x+6=12 | | 5x-16=-3x+8 | | 5x+3x-16=8 | | (2x-1)(2x-3)(2x-5)=0 | | 5x2=3x+8 | | 4x+5x+12=30 | | 5x+3x-16=18 | | (0,25)^(4-x)=32 | | (0,25)^4-x=32 | | 6n^2+18n-60=0 | | 2000=x-0.2x-2035 | | 13x/15=180 | | –(-x-5)+5(x-9)=2(x+8)-(2x+5) | | H(t)=-4.94.12^2 | | 2x(x-3)+(2x-5)(x-4)/(x-4)(x-3)=25/3 | | 1/3m+1=-7- | | (10x+7)+(10x+3)=180 | | -5x-9x=-12 | | 1/2m+3(1/2m+2)=1/2m+4 | | a=4(3.14)13^2 | | 2x2+5-3=0 | | 6+5(a+1)=36 | | 11=c|-5+8 | | 30x2+11x+1=0 | | 5000=1.07x | | 2/3x+1/5x=180 | | 5w/2-7=13 | | 2/3x+x/5=180 | | 16+3x=58 | | 0.10x+0.45(70)=34.5 | | 16+3x+13=36 |